HOT BRIQUETTE IRON

HBI & DRI

The Ideal Merchant Steelmaking Metallic
What is HBI (?)

HOT IRON BRIQUETTES

What is HBI (?)

HOT IRON BRIQUETTES (HBI) is a premium form of Direct Reduced Iron (DRI)* that has been compacted at a temperature greater than 650° C at time of compaction and has a density greater than 5000 kilograms per cubic meter (5000 kg/m³).

DRI is a metallic material produced from Iron Oxide fines or iron Oxide pellets and/or lump ores that have been reduced (oxygen removed) without reaching the melting point of iron.

Listed by IMO as: *Direct Reduced Iron (A) Briquettes, hot-moulded.*
Hot Briquettes Iron

Chemical Analysis
Total Fe - 92.5 % min
Metallic Fe - 84 % m
C - 0.8 - 1.5 %
P - 0.09 % max
SiO2 (Silice - 1.5 % max
MgO - 0.3 % max
CaO - 0.03 % max
Al2O3 (Alumina) - 1.3 % max
Gangue - 3.0 % max (CaO+MgO+ SiO2+Al2O3)

Residual
Cu <=0.002%
Ni <=0.006%
Cr <=0.008%
Mo <=0.002%
Sn <=0.002%

Physical Analysis
Size - 90 x 58 x 29 mm
Weight - 0.5 - 0.7 Kg
Bulk Density - 2.77 ton/M3 min
Briquette density - >4 mm : 98%
Granulometric Distribution - <4 mm : 2%
Moisture - 0.1% max.
Hot Briquettes Iron

HBI Advantages:

- High bulk density can hold more quantity on charge bucket in comparison to scrap. Known, consistent chemistry certified by the producer unlike scrap which may vary.
- Minimal trace elements like Cu, Ni, Cr, Mo, Sn, Pb, and V in comparison to scrap.
- High thermal and electrical conductivity.
- Not prone to accident due to self-heating unlike DRI.
- Low reactivity with fresh and salt water (re-oxidation).
- Resistant to degradation due to handling and weathering.
- Compatible with all bulk materials handling equipment.
- Safe, easy to store in all types of weather.
- Reduction in tap-to-tap time while charging to EAF in comparison to scrap.
Hot Briquettes Iron

Use in Electric Arc Furnaces

Due to their high density, the briquettes can be used as an alternative metallic source by either charging in buckets (batch charging) or continuous feeding through the roof. By charging in buckets, it is possible to reduce the number of back-charges since briquettes are much denser than scrap. Up to 40% briquettes can be used when charging in buckets. In continuous feeding, briquettes are more effective than DRI due to their high density, which allows them to penetrate to the slag/metal interface quickly rather than hang up in the slag.

It is possible to continuously charge up to 100% briquettes. One of the melt shops uses an 85% briquette practice. By continuous feeding, all back-charges can be eliminated, which reduces tap to tap time and heat losses due to swinging the roof.

This results in a more constant power input, which reduces line losses and improves productivity. Because of the low residual content of the briquettes, they are in increased demand for the production of higher quality steels.

Use in Ladle Furnaces

The low residual content, compact shape, and high thermal conductivity make briquettes attractive as a coolant for liquid steel in ladle furnaces.

The HBI are used as a replacement for oxide pellets as coolant in BOFS to increase hot metal production. Up to 5% briquettes have been used as coolant in large BOF shops.

They can also be used as a trim coolant in ladles. HBI has been used in BOFs as a high quality low residual scrap substitute with excellent results.
Used in BOF

The HBI are used as a replacement for oxide pellets as coolant in BOFS to increase hot metal production. Up to 5% briquettes have been used as coolant in large BOF shops.

They can also be used as a trim coolant in ladles. HBI has been used in BOFs as a high quality low residual scrap substitute with excellent results.

Use in Blast Furnaces

Using HBI in the burden of blast furnaces allows the productivity to be increased and reduces coke consumption.

Other uses

The HBI are used in smaller quantities in cupolas with good results. Briquettes with up to 3% carbon are being used with excellent results in EAF shops.

HBI is a high density ferrous raw material is used in electric arc furnace (EAF) and basic oxygen furnace (BOF) Blast Furnace (BF) for steel making.

Due to its high density and compact form, it's very convenient for handling and storage. It has many advantages over scrap, pig iron and DRI as a raw material for making steel.
HBI ~ STOCKPILE
HOT IRON BRIQUETTES

How HBI Is Made?

Hot Briquettes Iron (HBI) is a premium form of Direct Reduced Iron (DRI)* that has been compacted at a temperature greater than 650° C at time of compaction and has a density greater than 5000 kilograms per cubic meter (5000 kg/m3).

* DRI is a metallic material produced from Iron oxide fines or Iron oxide pellets and/or lump ores that have been reduced (oxygen removed) without reaching the melting point of iron. Listed by IMO as: Direct Reduced Iron (A) Briquettes, hot-moulded

HBI is produced by any of several commercially proven direct reduction processes. The direct reduced iron (DRI) is compacted while hot but in a solid state in specially designed roller presses to create a dense, pillow-shaped metallic iron briquette.

Iron Briquettes are produced by reducing iron ore fines in fluid bed reactors with a counter current reducing gas (Fluidized Iron Ore Reduction). Due to their high density and metallization, low gangue and residual content, and inert character, Iron HBI is the ideal metallic charge for steelmaking.

At present, direct reduced iron in the form of DRI and HBI is the Major source of scrap Substitutes worldwide. Venezuela has more experience with direct reduction processes than any other country in the world due to the diversity of processes, which have been installed there. Its experience covers more than 30 years, and the country now has over 6 Million MT of installed DR capacity in order to play an important role as a reliable supplier of HBI.
Venezuela’s major DRI Projects

The government owned iron ore supplier CVG Ferrominera Orinoco (FMO) is active in the Promotion of new DR projects. Voest Alpine Industrienlagenbau along with two Venezuelan Engineering companies has completed detailed Engineering for the Orinoco Iron plant.

Orinoco, Comsigua and Venprecar Iron Ore Venezuela’s largest merchant
Hot Briquette Iron (HBI) Producers in South Americas
HBI - PLANT

Orinoco
The plants uses FINMET® and technology, and is able to produce 2.2 Million MT of HBI per year. The company is present in four continents and its Export experience began in late 1970's already. Orinoco Iron company has been formed to build and operate a 2.2-million mt/y FINMET® plant in Puerto Ordaz, Venezuela. Orinoco Iron is the largest merchant Hot Briquette Iron (HBI) producer in the Americas.

Comsigua
The second project is the 1 Million mtpy Comsigua plant which utilizes the MIDREX® technology. The plant is located in the Punta Cuchillo industrial park developed by CVG Ferrominera where a new 3.3 Million mtpy pellet plant is on line. Feed for the plant would be supplied directly from the pellet plant. A new project, Comsigua II, for an additional 1 Million mtpy MIDREX® DR plant at Punta Cuchillo is now being evaluated. Product will be shipped by rail from Comsigua to the Palua port on the Orinoco River.

Venprecar
Another pellet based plant, [Posven*renamed] in Venprecar, using previously the HYL III process in Puerto Ordaz. This plant have one steam reformer and two 750,000 HYL III reactors and has produce HBI for the merchant market. The majority were shipped by Posco to Korea, and much of the remaining product was for the US market. The plant, like Comsigua, supplied with San Isidro pellets and lump, with the pellets coming from the adjacent pellet plant. The product will be shipped by rail to Palua, where it will be loaded onto ships for export. The plant has an Investment cost of $326 Million not including port facilities.

Since these three plants constructed, they produce HBI for the Export market only. They were increase the Venezuelan HBI availability for Export from the present level of about 1.5 Million mtpy to about 6.5 Million mtpy.
Orinoco Iron Plant

Finmet® Process 2,200,000 MT/Year

Orinoco Iron uses a fluid bed iron ore fines reduction process to produce hot molded briquettes. The Finmet® process is based upon the reduction of iron ore to metallic iron at high temperature and pressure using reducing gases produced from reforming. The reducing gas utilized has a high content of hydrogen.

The heart of the process is a series of four fluidized bed reactors to convert iron ore fines (12 mm) to HBI. The fines are first preheated in the preheat reactor by the combustion of natural gas in a fluidized bed under non-reducing conditions.

Now at a temperature of 750°C, the fines flow by gravity to the first of three reducing reactors, and pass successively down through the other two. The iron ore is reduced by contact with the reducing gas, and reaches a metallization of 92-93% in the final reactor. Here carbon is formed on the reduced iron ore in the form of iron carbide.

Once the reduction process is completed, the hot iron is transferred to the briquetting machines, where it is compacted between counter-revolving rollers into strings of briquettes. The strings are separated into individual briquettes. The briquettes are passivated and cooled, and then are stored in outdoor storage piles. The briquettes produced in this process are very inert and exhibit little re-oxidation tendency.

An integral part of the process is the quality control, which is applied at each step and thereby ensures that the final product quality meets Orinoco Iron's standards.
Raw Materials and Utility Sources

Iron Ore
Iron ore is mined and sold in Venezuela exclusively by CVG FMO, whose mines are located in the Guayana region. The iron ore reserves of CVG FMO are estimated to be around 4.2 billion tons of proven reserves and 14.7 billion tons of total reserves, including estimates for probable and possible deposits. Venezuela can supply its expected metallics demand for more than a century based upon present demand and proven reserves.

The proven reserves for mines with at least 64% iron on a dry basis is 1.7 billion tons. This type of ore is classified as shipping grade, and as such it can be used directly from the mine for steelmaking or direct reduction. There are another 2.5 billion tons of proven ore reserves with 60 to 63% iron. This ore would require a minimal amount of upgrading in order to be used in steelmaking. By comparison, most US ores have less than 50% iron and have to be beneficiated so that iron ore can be used for steelmaking.

In Venezuela, as in many mining regions in the rest of the world, the major part of the ore mined is in the form of fines under 1/2" in size.

Utility Sources

Natural Gas
Natural gas for the Project is provided by PDVSA Gas, the sole supplier in the region. Currently, the gas is produced at wells in the El Tigre area and is transported by pipeline to a gas liquid extraction plant at Jose, on the coast, and then sent by pipeline to the Orinoco Iron Plant.

Venezuela has proven natural gas reserves of 148 trillion cubic feet (Tcf), the second largest in the Western Hemisphere (behind the United States). In addition, new discoveries far exceed increases in consumption. Consumption in the Puerto Ordaz area is in the order of 3.4 billion m3 per year, 12% of total production.

Electrical Power
Electricity is provided by Edelca, which owns and operates all the hydroelectric power supply of the Guayana region. The electricity is supplied by one of the largest and most reliable hydroelectric networks in the world, as its power generation capacity is not vulnerable to adverse changes in rainfall conditions. The Dams - Guri, Macagua I, Macagua II, and Macagua III - provide a combined generating capacity of over 13,500 MW. This will be increased by the construction of new hydroelectric dams in the future. The region's total hydroelectric capacity is forecasted to be over 18,000 MW in 2010.

Water
Industrial water is supplied from the Caroni River, which has a maximum flow over 10,000 m3/sec. The Orinoco Iron Plant uses 0.2 m3/sec.
Facilities / Supporting Infrastructure

Rail Transportation

There is an existing rail line adjacent to the Orinoco Iron Plant site which connects the Matanzas Industrial Zone to the CVG FMO ore processing facilities at Puerto Ordaz and Palúa. The ore required by Orinoco Iron is delivered by rail car to an unloading station located at the Plant. HBI product from the Plant is transported by conveyor belts to metal storage hoppers located over the rail spur at the rail receiving station inside the Plant site. HBI is an inert material and can be safely stored in uncovered piles or in hoppers. The hoppers will discharge the HBI directly into the rail cars, which deliver the HBI to the shipping port. Capacity of CVG FMO rail line 32 million tpa.

Roads

The Guayana region has one of the best road networks in Venezuela. The Matanzas Industrial Zone has a modern road network which connects it with neighboring towns. A well maintained four lane highway connects it to both Puerto Ordaz and Ciudad Bolívar. A six lane road connects Matanzas to San Felix, where many of the workers in the heavy industrial plants live.

Orinoco River

The Orinoco River has an estimated maximum shipping capacity of 100 million tpa, or more than five times its present traffic. Vessels of up to 80,000 DWT can load during the period when the Orinoco River draft is high (during May-November) and vessels of around 40-50,000 DWT can make the passage to the Atlantic during the dry season. The draft in the low season is 28-30 feet, while in the high season is 32-38 feet. Most HBI cargoes are being transported in 25-40,000 ton lots.
Port Facilities

The Palúa facility is located on the mile 184 of the Orinoco River. HBI from the Orinoco Iron Plant is exported from the Palúa facility at San Felix. The Palúa dock has 276.6 meters in length and can berth one vessel. Palúa's ship loading capacity is 1,100 tph for HBI. At present HBI is transported to Palúa and stored at a 150,000 tons store-yard. The HBI is transported from the plant to the port by rail cars, and stored in piles, then the product is loaded by front end loaders onto a mechanized system which sends it into the ships.

These installations are designed in conformity with the concept of "soft loading", in order to optimize the degradation of the product, which improve the material handling.
Finally, the sad news ::

Venezuela’s share of world DRI/HBI production has declined steadily since its pre-eminence in 1983...

Initially this was not due to technical problems, but rather through the nationalization of all producers since the socialized process in the country take place by destroying entirely output that has further deteriorated dramatically.

Slowly recovering is in sight...!